
ISSN 0021�3640, JETP Letters, 2012, Vol. 95, No. 12, pp. 670–679. © Pleiades Publishing, Inc., 2012.
Original Russian Text © L.V. Abdurakhimov, M.Yu. Brazhnikov, A.A. Levchenko, I.A. Remizov, S.V. Filatov, 2012, published in Pis’ma v Zhurnal Eksperimental’noi
i Teoreticheskoi Fiziki, 2012, Vol. 95, No. 12, pp. 751–760.

670

1. INTRODUCTION

The frequency of capillary waves on the surface of a
liquid ω is determined by the wave vector k, surface
tension coefficient σ, and density of the liquid ρ:

(1)

The dispersion law of capillary waves given by
Eq. (1) is of the decay type: three�wave processes of
the decay of one wave into two waves and merging of
two waves into one wave are allowed with the conser�
vation of energy and momentum:

(2)

When the surface of the liquid is excited at low fre�
quencies by an external force, the turbulent state can
be formed in the system of capillary waves, where the
energy flux P in the k space is directed from the pump�
ing region toward higher wave vectors (higher frequen�
cies); i.e., a direct cascade is developed. Wave (weak)
turbulence theory [1] predicts that the main contribu�
tion to the energy transfer through the turbulent capil�
lary cascade comes from the three�wave processes of
wave merging. In this case, the energy of the waves is
distributed in frequency range according to a power
law E

ω
 ~ ω–α. It is most convenient to experimentally

study the pair correlation function I(τ) =
 of the deviation of the surface

from the equilibrium state at the point r rather than the
energy distribution E

ω
, because the deviations of the
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ρ
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surface from the plane state η(r, t) can be directly
measured. Wave turbulence theory [1] for a system of
capillary waves on the liquid surface predicts the for�
mation of a turbulent cascade in the inertial range
bounded by the pumping region at low frequencies and
by the dissipative range at high frequencies. The pair
correlation function I(r, t) within the inertial range in
the Fourier representation is described by the power�
law function of the frequency (turbulent cascade)

(3)

In the case of capillary waves, E
ω
 ~ ω4/3I

ω
. The expo�

nent m depends on the spectral characteristic of the
exciting force. For broadband pump, m = 17/6. Our
preliminary experimental studies on the surface of liq�
uid hydrogen show that the spectral characteristic of
the exciting force determines the exponent of the
power�law function [2]. When the surface is excited by
a low�frequency harmonic force, the correlation func�
tion I

ω
 includes a number of narrow peaks with fre�

quencies multiple of the pump frequency ωp. The
positions of the peaks maxima are well described by
the power�law function ω–m with the exponent m =
3.7 ± 0.3. If pumping at one resonance frequency is
supplemented by excitation by a harmonic force at
another resonance frequency, the exponent decreases
to m = 2.8 ± 0.2. When the surface is excited by broad�
band low�frequency noise, the exponent is m = 3.0 ±
0.3. In those experiments, we qualitatively demon�
strated that the exponent m in the case of pumping by
a harmonic force at one resonance frequency of the
cell is larger than that in the case of the excitation of
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the surface by broadband noise in agreement with [3].
Computer simulations [3] showed that, when the
width of the pump noise band is decreased, a number
of equidistant peaks appear on the turbulent cascade.
The width of these peaks depends linearly on the fre�
quency. In the case of pumping in a narrow band, a
decrease in the height of the peaks with an increase in
the frequency is described by a power law with the
exponent that is one unit larger than the exponent for
the case of broadband pump noise, i.e., m = 23/6.
Detailed information on the evolution of the turbulent
cascade when modifying the pumping spectral charac�
teristic from a broadband exciting force to a narrow�
band one can be found in [4]. In the steady�state tur�
bulence spectrum in the system of capillary waves, the
energy is transferred toward higher frequencies, where
it is transformed to heat owing to viscous losses, and
the turbulent cascade decays. For this reason, to main�
tain the turbulent cascade in the steady state, it is nec�
essary to continuously introduce energy at low fre�
quencies. The frequency ωb of the high�frequency
edge of the inertial range can be estimated under the
assumption that the time of the nonlinear wave inter�
action τnl at this frequency is on the order of viscous
damping time τ

ν
 [2]:

(4)

where  is the wave amplitude squared at the pump
frequency ωp and ν is the kinematic viscosity of the
liquid. The behavior of the spectrum at high frequen�
cies is determined by the features of energy dissipation
and nonlinear wave interaction. When waves in the
dissipative range interact mainly with the nearest
neighbors (broadband pump) rather than with waves
from the inertial range, the distribution of waves at
high frequencies becomes close to a Boltzmann distri�
bution [5]. Comprehensive analysis gives a quasi�
Planck spectrum of the correlation function in the dis�
sipative range:

(5)

where ωd is the characteristic frequency of the distri�
bution and s is the pre�exponential exponent. A
numerical simulation for capillary waves confirmed
the exponential dependence in the distribution of
waves in the dissipative range. At the same time, when
the surface of the liquid is excited by a harmonic force,
interactions with modes from the inertial range can
dominate for high�frequency harmonics of the turbu�
lent cascade [6]. Under finite size geometry condi�
tions, the spectrum of capillary waves is transformed
from a continuous distribution to a discrete one, where
the distance between resonance modes increases with
the frequency. For the case of monochromatic excita�
tion of the surface of the liquid, the turbulent cascade
consists of harmonics whose frequencies are multiple
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of the frequency of the exciting force. Simple consid�
eration indicates that the system of equations (3) has
no solutions in the case of such an excitation of the
surface [7, 8]. However, as was shown in [9], this con�
straint is eliminated if the nonlinear broadening of the
resonance peaks is taken into account. In this case, the
conservation laws should be rewritten in the form

(6)

where δω is the characteristic nonlinear broadening of
the resonance peak. Furthermore, it should be taken
into account that the discrete spectrum for a classical
liquid at high frequencies becomes quasi�continuous
because of the viscous broadening of resonance peaks.
The kinematic viscosity coefficients for liquid hydro�
gen and helium are one and two orders of magnitude
smaller than that for water, respectively. For this rea�
son, the discreteness conditions can play a significant
role in energy transfer in the cascade [10] in the case of
monochromatic excitation. In [11], we reported our
results obtained on the surface of superfluid helium in
the case of harmonic pump when discreteness is sig�
nificant and discrete turbulence is developed. At the
same time, for the case of broadband pump of the sur�
face of liquid hydrogen and helium, kinetic turbulence
is implemented, which is the closest to a model system
theoretically developed in [1]. The features of the
interaction between waves from the dissipative range
and inertial range can influence the shape of the tur�
bulence distribution near the edge of the inertial range.
As was shown in [6], if energy dissipation at high fre�
quencies does not ensure the absorption of energy
from the turbulent cascade, this can lead to the devia�
tion of the distribution in the inertial range from the
power law. Our preceding experiments [12] indicated
that the use of liquid helium and hydrogen for investi�
gations of turbulence has advantages compared to tra�
ditional liquids owing to their low density and kine�
matic viscosity.

2. EXPERIMENTAL PROCEDURE

Significant advances in the investigation of capil�
lary turbulence have been achieved in recent years
owing to the fast development of experimental tech�
niques and computer methods for processing of rap�
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Fig. 1. Layout of the detection of waves on the surface of
liquid helium and hydrogen.



672

JETP LETTERS  Vol. 95  No. 12  2012

ABDURAKHIMOV et al.

idly varying signals. In our investigations, we used the
procedure [13] based on the measurement of changes
in the power of a laser beam reflected from the oscil�
lating surface of the liquid. The layout of the measure�
ments is shown in Fig. 1. The measurements were per�
formed on optical cells placed in the vacuum cavity of
a helium cryostat. A plane horizontal capacitor was
placed inside the cells. Gaseous hydrogen (or helium)
was condensed into a cylindrical copper cup. The
diameter of the cup was 60 and 30 mm in the experi�
ments with hydrogen and helium, respectively. The
height of the cup was 4–6 mm. The upper horizontal
metallic plate was placed at a distance of 3.5 mm over
the cup. The liquid was collected until the surface of
the liquid reached the edge of the cup. The measure�
ments with hydrogen and helium were performed at
temperatures T = 15.5 and 1.7 K, respectively. A radio�
active source, which emitted β�electrons with an aver�
age energy of 5 keV, was placed on the lower plate of
the capacitor. An ionized liquid layer was formed near
the surface of the source plate. A voltage of about
1000 V applied to the capacitor plates extracted posi�
tive ions from the ionized layer and pulled them to the
surface of the liquid. Thus, the charged surface of the
liquid and the upper metallic plate formed a planar
capacitor. Waves on the charged surface of the liquid
were excited by an alternating electric field when an ac
voltage with an amplitude of 1–100 V was applied to
the metallic cup in addition to the dc voltage. Surface
was pumped by a harmonic force at frequencies close
to the resonance frequencies of the cylindrical cell or

by broadband noise. The pump noise signal was syn�
thesized by the inverse Fourier transform using a spec�
ified power spectrum and a random set of phases. The
use of the electric field to excite the surface of the liq�
uid has a number of advantages, because the distur�
bance can be applied only to the surface, the symmetry
of the disturbance can be controllably changed, and
the spectral characteristic of the exciting force can be
varied. A variation of the power of the reflected laser
beam was measured by a Hamamatsu s3590�08 semi�
conductor detector. The ac voltage from the photode�
tector P(t), which was proportional to the power of the
reflected beam, was amplified by an SR570 amplifier
and stored in computer memory at a sampling rate of
up to 102.4 kHz using a Leonardo�II high�speed
24�bit analog�to�digital converter. The recording time
of the signal P(t) ranged from 3 to 100 s. The P(t)
dependences were processed by the fast Fourier trans�
form algorithm. As a result, we obtained the frequency
distribution of the squares of the amplitudes of har�

monics ; for a “wide beam” case, this distribution,
as was shown in [13], is proportional to the pair corre�
lation function of deviations of the surface from the

equilibrium state: I
ω
 ~ .

3. EXPERIMENTAL RESULTS

3.1. Two Different Decay Regimes of the Turbulent 
Cascade in the Dissipative Frequency Range

The spectrum of capillary waves on the surface of
superfluid helium�4 at a temperature of T = 1.7 K is
shown in Fig. 2 on the log–log scale. The surface was
excited by a harmonic (sinusoidal) force at one of the
resonance frequencies of the cell (fp ≈ 80 Hz), f =
ω/2π, where ω is the angular frequency. The ampli�
tude of the pump ac voltage was 11 V. It can be seen
that the turbulence distribution consists of a set of
equidistant harmonics. The first harmonic is at the fre�
quency fp and corresponds to oscillations forced by the
external sinusoidal pump. The other harmonics are
formed at frequencies multiple to the pump frequency
fp due to three�wave processes of the nonlinear inter�
action. The inertial range is clearly observed in the fre�
quency range from 800 Hz to 4 kHz, where the turbu�
lence distribution is described by a power�law function

 ~ ω–3.7. The exponent of –3.7 is in agreement with
the theoretical predictions for capillary turbulence in
the case of narrowband pump [3]. At frequencies
above 4 kHz, the turbulence distribution decreases
rapidly under the effect of viscous dissipation and
approaches the instrumental noise level. The fre�
quency fb ≈ 4 kHz can obviously be interpreted as the
position of the high�frequency edge of the inertial
range. The turbulence distribution in the dissipative
range (at frequencies above fb) can be described by an

exponential function  ~ exp(–f/fd) with a charac�

P
ω

2

P
ω

2

P
ω

2

P
ω

2

Fig. 2. Turbulence spectrum of capillary waves  on the

surface of He�II in the case of harmonic pump at a fre�
quency of fp ≈ 80 Hz by an ac voltage with an amplitude of

11 V. The dashed line corresponds to the power law  ~

ω
–3.7. The high�frequency edge of the inertial range fb is at

a frequency of about 4 kHz. The solid line is the exponen�

tial function  ~ exp(–f/fd) with a characteristic fre�

quency of fd ≈ 170 Hz close to the pump frequency fp.
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teristic frequency of fd ≈ 170 Hz. Thus, fd appears to be
close to the pump frequency fp. Moreover, it was found
that the frequencies fd and fp are close in the experi�
ments with various pump frequencies and amplitudes.
It is worth noting that it was shown theoretically [6]

that the characteristic frequency fd in the case of
broadband pump should be close to the boundary fre�
quency fb. Indeed, when waves on the surface were
excited by pump noise, the turbulence distribution had
a qualitatively different shape. Figure 3 shows the
spectrum obtained when the surface was pumped by
noise in the frequency range of 90–200 Hz. It can be
seen that the spectrum is smooth and the inertial range
in which the spectrum is described by the Kolmog�

orov–Zakharov power law  ~ ω–2.8 in agreement
with theoretical predictions, is rather narrow (from
about 400 Hz to fb ≈ 2 kHz). The wave distribution in
the dissipative range can be described by an exponen�
tial exp(⎯f/fd) with the frequency fd = 700 Hz. It is
important that fd is much higher than the pump fre�
quencies and is fairly close to the boundary frequency
fb of the Kolmogorov–Zakharov spectrum (this quali�
tative relation between fd and fb in the case of broad�
band pump is independent of the pump amplitude).

Thus, we have observed two different decay regimes
of wave turbulence in the dissipative frequency range:
in the case of harmonic pump, the characteristic fre�
quency fd of exponential decay is much lower than the
boundary frequency fb and is close to the pump fre�
quency fp; in the case of broadband pump, fd is close to
the boundary frequency fb.

It is noteworthy that the presence of two different
decay regimes of the turbulent cascade is not attrib�
uted to the specificity of superfluid helium�4, because
qualitatively similar results were obtained in experi�
ments with normal helium�4 and liquid hydrogen.

P
ω

2

Fig. 3. Turbulence spectrum of capillary waves  on the

surface of He�II in the case of broadband pump in the fre�
quency range of 90–200 Hz. The dashed line corresponds

to the power law  ~ ω–2.8. The high�frequency edge of

the inertial range fb is at a frequency of about 2 kHz. The

solid line is the exponential function  ~ exp(–f/fd) with

a characteristic frequency of fd ≈ 700 Hz. According to the�
ory, fd is close to the boundary frequency fb.
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Fig. 4. Turbulence spectrum of capillary waves on the sur�
face of liquid hydrogen in the case of harmonic pump at a
frequency of about 120 Hz. The high�frequency edge of
the inertial range fb is at a frequency of about 4 kHz. The

line is the exponential function  ~ exp(–f/fd) with a

characteristic frequency of fd = 180 Hz.
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Fig. 5. Spectrum of surface oscillations  of liquid

hydrogen excited by a random force in the frequency range
of 39–103 Hz at various pump amplitudes. The rms pump
voltage Vp varied from 4 to 30 V. Darker lines correspond
to more intense pump. The arrow indicates the high�fre�
quency edge of the inertial range ωb/2π ≈ 4 kHz at a pump
voltage of Vp = 30 V.
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Figure 4 shows the spectrum of capillary waves on the
surface of liquid hydrogen in the case of intense har�
monic pump at a frequency of about 120 Hz. The
characteristic frequency fd of the exponential decay of
the turbulence distribution in the dissipative range is
much lower than the high�frequency edge of the iner�
tial range and is close to the pump frequency range.
Another decay regime is demonstrated in Fig. 5, where
the spectra of capillary waves on the surface of liquid
hydrogen in the case of pump noise with various
amplitudes in the frequency range of 39–103 Hz are
shown. The pump frequency range can be clearly seen
at low frequencies. The pump range is followed by the
inertial range, which is a relatively wide frequency

range where the spectrum  satisfies the Kolmog�
orov–Zakharov power law. The width of the inertial
range depends on the pump amplitude. When the sur�
face is excited by a weak force at Vp = 4 V, dissipation
begins immediately after the pump range and no iner�
tial range is observed. With increasing amplitude of the
pumping the inertial range widens. Therewith, the
upper edge ωb/2π of the inertial range is shifted toward
higher frequencies. The widest inertial range (from
approximately 0.3 kHz to ωb/2π ≈ 4 kHz) is observed
at the maximum pump voltage (Vp = 30 V). At fre�
quencies above the high�frequency edge of the inertial
range, surface oscillations decay owing to viscous

losses and the spectrum  smoothly approaches the
instrumental noise level. In turbulence spectra plotted
on a semilogarithmic scale (Fig. 6), it can be clearly
seen that a decrease in the amplitudes of the waves in a
certain frequency range above the high�frequency
edge of the inertial range can be well described by an

P
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2

P
ω

2

exponential law  ~ exp(–ω/ωd). For example, the
spectrum of the waves obtained in the experiments
with a pump amplitude of Vp = 26 V can be approxi�
mated in the range of 5–9 kHz by the exponential
exp(–ω/ωd) with ωd/2π ≈ 0.6 kHz. It is noteworthy
that the frequency ωd/2π is several times lower than
the frequency of the visible boundary between the
inertial and dissipative ranges (see Fig. 5). However,
this discrepancy can be attributed to some freedom in
the definition of the boundary frequency, which has
the meaning of the characteristic frequency and can be
normalized by a certain constant depending on the
chosen procedure of determination of the edge of the
inertial range. This assumption is confirmed by the
fact that the pump�amplitude dependences of ωd and
ωb are identical (see Fig. 7). (It is interesting that the
exponent of the power�law dependence of ωb on the
pump amplitude is inconsistent with the predictions of
the wave turbulence theory (see [15]).) Thus, it can be
concluded that ωd in the case of broadband pump cor�
responds to the high�frequency edge of the inertial
range. The experimental results confirm the theoreti�
cal conclusion [6] that the local interaction of waves
plays the crucial role in the dissipative range for the
case of broadband pump. The characteristic frequency
of the quasi�Planck distribution increases with the
pump intensity according to a law different from the
theoretically predicted dependence. Unfortunately,
the measurement accuracy is insufficient to estimate
the exponent s in Eq. (5).

To summarize, in the experiments on the surface of
liquid hydrogen in the case of harmonic pump, as well
as in the experiments on the surface of superfluid
helium�4, the characteristic frequency fd = ωd/2π of
the exponential decay is close to the pump frequency
fp, whereas the characteristic frequency in the case of
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Fig. 6. Spectra  at pump voltages Vp = 8, 16, and 26 V

on a semilogarithmic scale (they are also plotted in Fig. 4
on a log–log scale). The dotted line is the power law ω–2.8.
The dashed lines are exponentials exp(–ω/ωd) with ωd/2π ≈
0.2, 0.4, and 0.6 kHz for Vp = 8, 16, and 26 V, respectively.
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Fig. 7. Boundary frequency of the inertial range ωb and the
characteristic frequency of the exponential decay in the
dissipative range ωd versus the amplitude of the exciting
force in the case of broadband pump (experiments with
liquid hydrogen).
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broadband pump is close to the upper edge fb = ωb/2π.
We explain the results obtained for the case of har�
monic pump by the nonlocality of the three�wave
nonlinear interaction between waves in the dissipative
range. We consider the frequency range near the high�
frequency edge of the inertial range fb, where the tran�
sition from the nonlinear transfer of the wave energy to
viscous dissipation occurs. Although viscous damping
with the characteristic time τ

ν
 = (2νk2)–1 ~ ω–4/3

becomes the main process, some nonlinear interaction
between waves also occurs. Furthermore, we take into
account that, in addition to local interaction with
waves from the high�frequency part of the inertial
range, waves from the transient region near fb can non�
locally interact with waves from the entire inertial
range. Indeed, the characteristic time of the local non�
linear interaction within the inertial range (three�wave
processes with close wave vectors k1 ≈ k2 ≈ k3) in the

case of harmonic and broadband pump is  ≈ ω1/6

and  ≈ ω–1/2, respectively [16]. We assume that
the times of the local nonlinear interaction in the dis�
sipative range near the high�frequency edge of the
inertial range fb have the same frequency dependence.
At the same time, the characteristic time of the inter�
action between waves with strongly different wave vec�

tors (nonlocal interaction, k1 � k2, k2 ≈ k3) is  ~

k–1/2 ~ ω–1/3 [6]. Thus, the condition  < 
can be satisfied in the case of harmonic pump at high
frequencies (above fb) (see Fig. 8). Consequently, the
nonlocal interaction with waves from the inertial range
can be the dominant nonlinear interaction of waves in
the dissipative range (this does not evidently mean that

τnl
harm

τnl
broad

τnl
nonloc

τnl
nonloc τnl

harm

locality within the inertial range is violated). Since the
wave energy is concentrated at low frequencies in the
pump region, the nonlocal interaction of waves from
the dissipative range with waves from the low�fre�
quency part of the inertial range determines the expo�
nential decay of the wave spectrum with the character�
istic frequency close to the pump frequency.

3.2. Accumulation of the Wave Energy
near the High�Frequency Edge of the Inertial Range

In a number of the experiments on the surface of
He�II with harmonic pump at moderate amplitudes, a
feature was revealed in the high�frequency range in the
spectra of capillary waves. In particular, when the volt�
age amplitude of harmonic pump at a frequency of
80 Hz is changed from 11 V (see Fig. 2) to 10 V, the
shape of the turbulence spectrum changes noticeably
(Fig. 9). In agreement with preceding works [17, 18],
the high�frequency edge of the turbulent cascade was
shifted toward lower frequencies. However, as can be
seen in Fig. 9, deviation from the power�law spectrum
is observed near the high�frequency edge of the inertial
range: a local maximum (shown by the dashed line) is
formed near the frequency ωb. With a further decrease
in the pump amplitude, the local maximum is shifted
toward lower frequencies. Finally, at very small pump
amplitudes, the spectrum consists only of several har�
monics and no local maximum is observed.

As was mentioned above, the formation of a local
maximum was observed in a number of experiments
with harmonic pump at certain frequencies. The dis�
tributions of pump frequencies at which the local
maximum is formed in different series of experiments
are different and apparently depend very strongly on

Fig. 8. Schematic frequency dependences of the charac�
teristic times of wave processes in the dissipative range: vis�
cous damping time τ

ν
 ~ ω–4/3, local�interaction time in

the case of harmonic pump  ~ ω1/6 and in the case of

broadband pump  ~ ω–1/2, and nonlocal�interac�

tion time  ~ ω–1/3.
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Fig. 9. Turbulence spectrum of capillary waves  on the

surface of He�II at moderate amplitudes of harmonic
pumping at a frequency of 80 Hz. Pumping voltage ampli�
tude is 10 V. A local maximum (marked by the dashed line)

is observed near 2.5 kHz. The dashed straight line is  ~

ω
–3.7.
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the operating parameters of the system such as the
temperature and level of He�II in an experimental cell.
A common feature of all these experiments is that the
local maximum is formed near the high�frequency
edge of the turbulence distribution, but the shape of
the local maximum and its exact position depend on
the frequency and amplitude of pump. For example,
when the surface was excited by a sinusoidal force at a
frequency of 34 Hz, a spectrum with a pronounced
local maximum was observed (Fig. 10). However, the
local maximum was located in the dissipative range of
the turbulence distribution, rather than in the inertial
range, as is shown in Fig. 9.

It is noteworthy that no local maximum was
observed in experiments with pump noise. For exam�
ple, Fig. 11 shows the turbulence distribution of waves
obtained in the experiments where the surface was
excited by a noise signal in the frequency range of 60–
130 Hz. The pump amplitude was chosen such that the
high�frequency edge of the inertial range was approx�
imately at the same frequencies as in the experiments
presented in Figs. 9 and 10.

The formation of the local maximum can be inter�
preted as the accumulation of the wave energy near the
high�frequency edge of the turbulent cascade, where
the transition from the nonlinear transfer of the wave
energy to the viscous dissipation of the energy occurs.
It was theoretically shown in [6] that the energy accu�
mulation can be due to the presence of viscous dissipa�
tion in the system that limits the inertial range owing
to the “bottle neck” effect. However, the dependence
of the formation of the local maximum on the pump
amplitude observed in our experiments cannot be
explained by the effect of viscous dissipation. At the
same time, Kartashova [7, 8] showed that certain fea�
tures in the processes of nonlinear interaction between
surface waves can be observed in vessels of finite sizes

owing to the discreteness of the wave�vector space.
The discrete wave turbulence theory was more recently
developed in a number of theoretical works. In partic�
ular, the model of “frozen” wave turbulence was pro�
posed in [9]. According to this model, the discreteness
of the wave�vector space can lead to the appearance of
oscillations on the turbulence spectrum at small pump
amplitudes. It can be assumed that the formation of
the local maximum is also determined by the discrete�
ness of the k space. However, only the case of waves on
the surface with a square boundary, where the wave�
vector space is two�dimensional, was considered in the
mentioned work [9]. Our experiments correspond to
cylindrical boundary conditions: surface oscillations
are described by Bessel functions and the wave�vector
space is one�dimensional. Since the density of reso�
nance in the k space depends strongly on the boundary
geometry [8], we obtained some qualitative estimates
in order to understand the role of discreteness in our
experiments in the cylindrical geometry. These esti�
mates will be presented below.

We believe that the local maximum is formed owing
to the discreteness of the system, namely, to the detun�
ing of the frequencies of harmonics (shown in Figs. 2,
9, 10) from the resonance frequencies of the experi�
mental cell. Indeed, in the case of surface waves in a
cylindrical cavity with the diameter D, the wave vec�
tors are the roots of the equation J1(kD/2) = 0, where
J1(x) is the Bessel function of the first order. According
to the asymptotic expression for the Bessel function

J1(x) ≈ cos(x – 3π/4) in the limit x  ∞, the
resonance wave vectors in the region of high k values
are equidistant with the step Δk ≈ 2π/D. However,
owing to the dispersion relation, the distance between

2/ πx( )

Fig. 10. Turbulence spectrum in the case of pumping at a
frequency of ωpump/2π = 34 Hz. A local maximum is
clearly seen in the spectrum (it is enclosed by the circle and
is shown on a magnified scale in the inset).

Fig. 11. Turbulence spectrum of capillary waves in the case
of pump noise in the frequency range of 60–130 Hz.
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the two nearest resonance frequencies increases with
the frequency as

(7)

Thus, the resonance frequencies in the case of capil�
lary waves are not equidistant. On the contrary, the fre�
quencies of nonlinear harmonics are multiple to the
pump frequency ωpump. For this reason, although Δω <
ωpump in our experiments, the sets of resonance fre�
quencies and frequencies of nonlinear harmonics
overlap insignificantly (in other words, frequency
detuning always exists).

This detuning is obviously important only at fre�
quencies where the broadening of resonance δω is
smaller than the distance Δω between the two nearest
resonances (Fig. 12), 

(8)

Resonance broadening δω can be represented as
the sum of viscous broadening δω

ν
 and nonlinear

broadening δωnl:

(9)

The viscous broadening of the resonance corre�
sponds to viscous damping [19],

(10)

and is related to the characteristic viscous�damping

time τ
ν
 as δω

ν
 = . The nonlinear broadening of the

resonance corresponds to the nonlinear transfer of the

Δω ∂ω
∂k
������Δk ∂ω

∂k
������2π

D
�����≈ 3π

D
����� σ

ρ
���⎝ ⎠

⎛ ⎞
1/3

ω1/3
.= =

δω/Δω 1.<

δω δω
ν

δωnl.+=

δω
ν

4νk
ω

2 4ν ρ
σ
���⎝ ⎠

⎛ ⎞
2/3

ω4/3= =

τ
ν

1–

wave energy in the inertial range from a given frequency
to other frequencies and is determined by the character�

istic nonlinear�interaction time τnl as δωnl = . The
characteristic nonlinear time for the case of harmonic
pump depends on the frequency as τnl ~ ω1/6 [16] and,
therefore, δωnl ~ ω–1/6. Since nonlinearity is assumed to
increase with the pump amplitude A, nonlinear broad�
ening can be represented in the final form

(11)

where �(A) is an increasing function of the pump
amplitude A.

τnl
1–

δωnl � A( )ω 1/6–
,≈

Fig. 12. Illustration of the possibility of strong suppression
of some harmonics for the case where the broadening of
resonance δω is smaller than the distance between the two
nearest resonances Δω if these harmonics are far from the
nearest resonance frequencies of surface oscillations in the
experimental cell.

Fig. 13. (Thick line with a minimum) Estimated total rel�
ative broadening δω/Δω, which is the sum of (monotoni�
cally increasing thin line) viscous relative broadening
δω

ν
/Δω and (monotonically decreasing thin line) nonlin�

ear relative broadening δωnl/Δω.

Fig. 14. Turbulence spectrum of capillary waves  on the

surface of He�II in the square cell in the case of intense
harmonic pump at a frequency of fp ≈ 90 Hz. The spectrum
in the inertial range is described by a power law (dashed
straight line).

P
ω

2

ωb
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After the substitution of Eqs. (7) and (9)–(11) into
Eq. (8), we can conclude that detuning is important at
frequencies satisfying the condition

(12)

At the high�frequency edge of the inertial range ωb,
where the damping of the turbulent cascade is
observed, the transition from the nonlinear energy
transfer to viscous dissipation occurs. Correspond�
ingly, the “viscous” time at this frequency is close to
the “nonlinear” time, τ

ν
(ωb) ≈ τnl(ωb). Thus, although

the function �(A) is unknown, its value at a given pump
amplitude in a given experiment can be estimated
from the condition of equality of nonlinear broaden�

ing δωnl =  and viscous broadening δω
ν
 =  at the

frequency ωb:

(13)

According to our estimates, condition (12) is satis�
fied in our experiments at moderate pump amplitudes
in a frequency range around the high�frequency edge
of the inertial range ωb (see Fig. 13). In this frequency
range, the detuning of the frequencies of harmonics
from the resonance frequencies plays an important
role and is responsible for the formation of the local

maximum in the turbulence distribution . Accord�
ing to the presented estimates, for the observation of
the wave energy on the surface of an arbitrary liquid,
the wave system should have small viscous broadening
(small viscosity of the liquid), small nonlinear broad�
ening (harmonic pump with a moderate amplitude),
and a relatively large distance between the resonance

4ν ρ/σ( )2/3ω4/3
� A( )ω 1/6–+

3π/D( ) σ/ρ( )1/3ω1/3
������������������������������������������������������� 1.<

τnl
1– τ

ν

1–

δω
ν

ωb( ) δωnl ωb( ).≈

P
ω

2

frequencies (relatively small cell). These conditions
are satisfied in our experiments. The use of superfluid
4He, whose viscosity is much smaller than the viscosity
of classical liquids, made it possible to detect the accu�
mulation of the wave energy in the turbulent cascade.

The above estimates and conclusions are qualita�
tive. Further experimental and theoretical investiga�
tions are necessary to explain in detail the mechanism
of the formation of the local maximum. For example,
we recently performed experiments on the study of the
turbulence of capillary waves on the surface of super�
fluid helium�4 in a 42 × 42�mm cell. Figures 14 and 15
show turbulence spectra for the case of harmonic
pump at a frequency of about 90 Hz with various pump
amplitudes. It can be seen that, as well as in the case of
the cylindrical cell, a decrease in the pump amplitude
is accompanied by the formation of the local maxi�
mum near the high�frequency edge of the inertial
range. However, the model presented above for the
cylindrical geometry is developed for wave processes in
the one�dimensional k space and strictly speaking
inapplicable for a square cell, because waves in this
case are characterized by the two�dimensional k space.

4. CONCLUSIONS

In summary, it has been shown experimentally that
a turbulent cascade in the dissipative range decays
exponentially. The characteristic decay frequency is
determined by the interaction of waves from the dissi�
pative range with each other or with waves from the
inertial range, depending on the spectral characteristic
of the exciting force at low frequencies. The discrete
turbulence regime, which is due to discreteness in the
spectrum of surface excitations and discreteness in the
turbulent cascade, is developed near the high�fre�
quency edge of the inertial range only on the surface of
superfluid helium in the case of harmonic pump. The
energy is accumulated in a narrow frequency range
near the edge of the inertial range because a “bottle
neck” is formed in the discrete regime.
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